Interactivity with 3D Models

Lex Lacson
Osaka University – Osaka, Japan
August 20, 2010
Final Report
About Me

• 2nd Year undergraduate Student at UCSD
• Double major in Computer Science and Computer in Art and Music
• Osaka University PRIME student
• UCSD mentor: Professor Jurgen Schulze
• Host mentors: Kiyokawa-sensei, Shimojo-sensei, and Date-sensei
Research Proposal

- Joint project with Tokyo PRIME student, Velu. – NICT and Osaka University
 - I worked on interaction
 - Velu worked on displaying the 3D content
 - Integrate both projects at the end
- Create a stable environment for real-time interaction between a human and 3D model using a video camera.
- Use OpenCV and existing tracking technologies to create a stable and easy to use interactive interface.
- Demonstrate this project at the 1300 Anniversary of the old capitol, Nara, Japan
Things to Consider

• Users of the System
 – Certain tracking implementations and interfaces may not work for certain people
 • Age
 • Color of Skin
 • Intelligence

• Design and layout of exhibition space
 – Lighting effects tracking
 – Dimensions of the building
 – Colors of the inside of the building
 – Other considerations as well
Things to Consider Continued

• Tracking
 – Only want to track one face at a time
 – how do I decide what face I want to track?
 – How do I know I am tracking the face I want to track?
 – Tracking that works in a busy environment

• Data Sending
 – How can I send my data to the rendering system?
General Layout of System

Calibration

Tracking Module

Send x, y, z data through network

Receiving module for rendering system

See result on Tiled Wall Display

Manipulate virtual camera in rendering system
• Tracking Module
 – OpenCV Haar classifier algorithm as a basis for face tracking
 • Detailed Explanation of Haar classifiers is beyond the scope of this project
 • Used OpenCV’s profile_face classifier to detect faces
 – Classifiers consist of a bunch of images of the proposed object
 – Several optimizations
 • Region of Interest tracking – speed up processing of system by a few magnitudes
 • Tracking only the biggest face – assume that the closest person to the camera is the most important person
 – Getting X, Y, Z from 2D image using homography matrix
 – Send data through UDP/IP
Software System in Detail

- Recieving module and virtual camera manipulation module
 - Recieve data from tracking module when ready to accept
 - Using x, y , and z, calculate rotation of camera around virtual 3D object
 - Not panning, but rotation around the object so you can see the sides of the 3D object
- openCOVER
 - Virtual Reality rendering system which runs on the cluster
 - The receiving module run on the cluster as well
 - 3D model that Velu create will also run in openCOVER
 - I take control of virtual camera, not the object
Physical System in Detail

PointGrey Flea3 monochrome firewire camera with VGA resolution

Other equipment
- Ethernet cable to send data through IP protocol
- 1394b bus and cable
- Camera mount

TDW that will display 3D content – runs on a cluster which I send coordinate data to

32 bit desktop running the Tracking module
Exhibition Site

- Old Capitol grounds in Nara
Results

• For the most part, the desired effect was created.
• Many families enjoyed the interface
• Some were scared to try it

Example of face tracking

• Almost no one tilted their heads in an awkward position
 • Set up of exhibition

Cannot Track Tilted Heads
Results

Faces drawn on paper can work too.

• See Video
Wonderful Aspects of My System

• Easy to use
 – Do not need to wear any markers such as strange hats or glasses

• Independent tracking module which can be used for many applications
 – Immersive Visualization
 • New way to help visualize data – ex: viewing molecules
 – Video games – Natal, DS, Playstation

• One camera
 – Integration into laptops since most laptops have good enough webcams for tracking
Problems Occurred during Exhibition

• Trouble tracking certain people
 – Children with small eyes, people wearing hats, and people with hair in front of their face caused some problems with face detection.

• Coordinate system on slave nodes of the tiled wall display are undefined in openCOVER rendering system

• Some people did not understand how to use the system

• Very difficult to track faces when there are too many of them in the camera viewpoint
Suggested Improvements

• Improve face tracking
 – Initial face detect, then switch to tracking algorithm using methods such as Kalman Filter
 – Need a way to deal with occlusions and blocking of the face by hats, hair, etc.
 – Kids with small faces
 – Get orientation of head to get more realistic viewpoint changes

• Introduce gestures
 – Spin the model with a hand swipe
 – Holding gestures to ‘hold’ the virtual 3D model
Acknowledgements

• University of California, San Diego, PRIME, Calit2
 – Dr. Jürgen Schulze
 – Teri Simas
 – Dr. Peter Arzberger
 – Dr. Gabriele Wienhausen
 – Jim Galvin
 – Tricia Taylor-Oliveira

• Osaka University, Cybermedia Center
 – Dr. Kiyoshi Kiyokawa
 – Dr. Mashita
 – Dr. Susumu Date
 – Takemura Laboratory

• NICT
 – Dr. Shinji Shimojo
 – Masaki Chikama
 – Yoshinori Kobayashi

• National Science Foundation, IOSE-0710726
Thank you!
Doumo!