HYDRA: A WEB-BASED VISUALIZER FOR HIGH-THROUGHPUT LIGAND DOCKING ANALYSIS

Nara Institute of Science and Technology (NAIST)
Nara, Japan

Curtis Sera
31 July 2015
Project Overview

- This project aims to create a browser-based program that can simultaneously display many molecular interactions in a dynamically sized grid of molecular viewers.
 - Simulated interactions will be obtained from high-throughput simulation programs.
 - Yuan Zhao, a former student of Dr Haga’s, previously created the framework for this program in Webix, a JavaScript library, and HTML5/CSS.
- This will enable almost any device with internet access to be used for data analysis with no end user setup.
- My specific focus will be on creating a functional graphical user interface (GUI)
Week 6 Progress

- 30 July - Met with Dr Haga, Ichikawa-sensei, Watashiba-sensei, and collaborating student Shelby Matlock
 - Discussed progress and future direction
 - Feedback on Shelby’s poster and paper drafts

- Added styling to the “active viewer”
 - The border around the last clicked viewer now turns lime-green to mark which viewer the compound controls will target

- Many bug fixes with 3Dmol viewers and the Webix GUI
 - Currently working with the 3Dmol developer to fix a final issue with deleting molecular surfaces from the viewers
 - Have applied a temporary patch until this is resolved within 3Dmol.js
Week 6 Progress (cont)

- Added distinct display settings for ligands
 - Ligands are identified by the ‘HETATM’ tag in .pdb files
 - The alternative method of identifying ligands in .pdb files involves setting them as a different “chain” (eg chain “B” if the main compound is chain “A”). However, this will not be supported as it does not have consistent implementation
 - With the exception of the “cartoon structure”, all the display settings available for proteins may also be applied to ligands

- Changed mechanism for switching between panes in the left panel
 - Replaced the tabbed view
 - Clicking a single button on the bottom will now switch between the panes. Currently uses a sliding animation
Week 6 Progress (cont)

Development snapshot: The same files are loaded on the top and bottom with different ligand settings. As marked by the green border, the bottom-left viewer is currently selected.

31 July 2015
Week 7 Plans

- **Implement**
 - Script to process the raw output of molecular docking programs
 - Protein and ligand models may be in separate files
 - Ligand atoms may not be formatted with the ‘HETATM’ tag
 - Will add option to allow user to batch upload raw output files and have them processed
 - This will streamline usage of Hydra for the average user
 - Pull fixes to 3Dmol.js into Hydra

- **Investigate**
 - Saving lists of compounds for future study or for simple record keeping
Plans for the remaining weeks

- The essential functionality of Hydra has now been successfully implemented
 - Models can now be uploaded and have their display settings adjusted
 - Notably, Hydra has also been made more computationally efficient by processing files asynchronously and by replacing GLmol with 3Dmol
- Areas to improve:
 - Allow Hydra to handle the raw output of molecular docking simulations to reduce work required of the end-user
 - Potentially allow users to save lists of compounds
 - No longer quite as necessary since Shelby Matlock’s work links compounds uploaded to Hydra directly to manufacturers
 - Add JSDoc style comments to each function
 - Will aid future developers and debugging and will streamline documentation generation
 - Write more detailed documentation and usage instructions
Exploration

Clockwise from the near right:
Omukae Dolls at Tenmangu Shrine;
Moyōshi-Taiko ceremony before the procession of floats at Tenjin Matsuri;
bustling Tenjinbashi 2-Chōme; friendly ceremonial ox; view of Tenjin Matsuri fireworks from Keihan National Highway
Exploration

Counter-clockwise from above:
Namba Parks at night; Tenjin Matsuri Fireworks; Namba Parks statue; noodles and tempura dinner set; on the bridge leaving the Tenjin Matsuri fireworks area (it was like a military evacuation in the movies)
Acknowledgements

I would like to thank all those involved in making this possible:

- **Mentors**
 - Dr Jason Haga & (Kohei) Ichikawa-sensei
- **NAIST’s Software Design & Analysis Lab (SD Lab)**
 - (Hajimu) Ōda-sensei, (Yasuhiro) Watashiba-sensei, & (Tomoko) Arai-sensei
- **UCSD Pacific Rim Experiences for Undergraduates (PRIME)**
 - Madhvi Acharya, Jim Galvin, Teri Simas, Dr Gabriele Wienhausen
- **Financial support**
 - Julia Brown
 - UCSD Undergraduate Research Scholarship coordinator Dr Sophia Tsai
 - Japan Student Services Organization (JASSO)
 - NAIST coordinator Nao Terada
 - NAIST
 - National Science Foundation
- **Additional thanks to all the SD Lab graduate students, the PRIME alumni, Yuan Zhao, and the developers of Webix & GLmol**
 - Special thanks to 3Dmol developer Dr David Koes for his great helpfulness and communicativeness